Tuesday, March 1, 2011

Compression by the SIP



As telephone-based 56k modems began losing popularity, some Internet service providers such as Netzero and Juno started using pre-compression to increase the throughput and maintain their customer base. As example, the Netscape ISP uses a compression program that squeezes images, text, and other objects at the modem server, just prior to sending them across the phone line. Certain content using lossy compression (e.g., images) may be recompressed (transcoded) using different parameters to the compression algorithm, making the transmitted content smaller but of lower quality. The server-side compression operates much more efficiently than the on-the-fly compression of V.44-enabled modems due to the fact that V.44 is a generalized compression algorithm whereas other compression techniques are application-specific (JPEG, MPEG, Vorbis, etc.). Typically Website text is compacted to 4% thus increasing effective throughput to approximately 1,300 kbit/s. The accelerator also pre-compresses Flash executables and images to approximately 30% and 12%, respectively.
The drawback of this approach is a loss in quality, where the GIF and JPEG images are lossy compressed, which causes the content to become pixelated and smeared. However the speed is dramatically improved such that Web pages load in less than 5 seconds, and the user can manually choose to view the uncompressed images at any time. The ISPs employing this approach advertise it as "surf 5× faster" or simply "accelerated dial-up".

Voice Modem

Voice modems are regular modems that are capable of recording or playing audio over the telephone line. They are used for telephonyapplications. See Voice modem command set for more details on voice modems. This type of modem can be used as an FXO card forPrivate branch exchange systems (compare V.92).

Compression by the SIP

As telephone-based 56k modems began losing popularity, some Internet service providers such as Netzero and Juno started using pre-compression to increase the throughput and maintain their customer base. As example, the Netscape ISP uses a compression program that squeezes images, text, and other objects at the modem server, just prior to sending them across the phone line. Certain content using lossy compression (e.g., images) may be recompressed (transcoded) using different parameters to the compression algorithm, making the transmitted content smaller but of lower quality. The server-side compression operates much more efficiently than the on-the-fly compression of V.44-enabled modems due to the fact that V.44 is a generalized compression algorithm whereas other compression techniques are application-specific (JPEG, MPEG, Vorbis, etc.). Typically Website text is compacted to 4% thus increasing effective throughput to approximately 1,300 kbit/s. The accelerator also pre-compresses Flash executables and images to approximately 30% and 12%, respectively.
The drawback of this approach is a loss in quality, where the GIF and JPEG images are lossy compressed, which causes the content to become pixelated and smeared. However the speed is dramatically improved such that Web pages load in less than 5 seconds, and the user can manually choose to view the uncompressed images at any time. The ISPs employing this approach advertise it as "surf 5× faster" or simply "accelerated dial-up".

Using Digital Lines

In the late 1990s Rockwell and U.S. Robotics introduced new technology based upon the digital transmission used in modern telephony networks. The standard digital transmission in modern networks is 64 kbit/s but some networks use a part of the bandwidth for remote office signaling (e.g., to hang up the phone), limiting the effective rate to 56 kbit/sDS0. This new technology was adopted into ITU standards V.90 and is common in modern computers. The 56 kbit/s rate is only possible from the central office to the user site (downlink). In the United States, government regulation limits the maximum power output, resulting in a maximum data rate of 53.3 kbit/s. The uplink (from the user to the central office) still uses V.34 technology at 33.6 kbit/s.
Later in V.92, the digital PCM technique was applied to increase the upload speed to a maximum of 48 kbit/s, but at the expense of download rates. For example a 48 kbit/s upstream rate would reduce the downstream as low as 40 kbit/s, due to echo on the telephone line. To avoid this problem, V.92 modems offer the option to turn off the digital upstream and instead use a 33.6 kbit/s analog connection, in order to maintain a high digital downstream of 50 kbit/s or higher. V.92 also adds two other features. The first is the ability for users who have call waiting to put their dial-up Internet connection on hold for extended periods of time while they answer a call. The second feature is the ability to quickly connect to one's ISP. This is achieved by remembering the analog and digital characteristics of the telephone line, and using this saved information to reconnect at a fast pace.

Soft Modem

A Winmodem or softmodem is a stripped-down modem that replaces tasks traditionally handled inhardware with software. In this case the modem is a simple interface designed to create voltage variations on the telephone line and to sample the line voltage levels (digital to analog and analog to digital converters). Softmodems are cheaper than traditional modems, since they have fewer hardware components. One downside is that the software generating and interpreting the modem tones is not simple (as most of the protocols are complex), and the performance of the computer as a whole often suffers when it is being used. For online gaming this can be a real concern. Another problem is lack of portability such that non-Windows operating systems (such as Linux) often do not have an equivalent driver to operate the modem.
A modem (modulator-demodulator) is a device that modulates an analog carrier signal to encode digital information, and also demodulates such a carrier signal to decode the transmitted information. The goal is to produce a signal that can be transmitted easily and decoded to reproduce the original digital data. Modems can be used over any means of transmitting analog signals, from driven diodes to radio.
The most familiar example is a voice band modem that turns the digital data of a personal computer into modulated electrical signals in thevoice frequency range of a telephone channel. These signals can be transmitted over telephone lines and demodulated by another modem at the receiver side to recover the digital data.
Modems are generally classified by the amount of data they can send in a given time unit, normally measured in bits per second (bit/s, or bps). They can also be classified by the symbol rate measured in baud, the number of times the modem changes its signal state per second. For example, the ITU V.21 standard used audio frequency-shift keying, aka tones, to carry 300 bit/s using 300 baud, whereas the original ITU V.22 standard allowed 1,200 bit/s with 600 baud using phase shift keying.

Form Factor

Motherboards are produced in a variety of sizes and shapes called computer form factor, some of which are specific to individual computer manufacturers. However, the motherboards used in IBM-compatible to fit variouscase sizes. As of 2007, most desktop computer motherboards use one of these standard form factors—even those found in Macintosh and Sun computers, which have not traditionally been built from commodity components. The current desktop PC form factor of choice is ATX. A case's motherboard and PSU form factor must all match, though some smaller form factor motherboards of the same family will fit larger cases. For example, an ATX case will usually accommodate a microATX motherboard.
Laptop computers generally use highly integrated, miniaturized and customized motherboards. This is one of the reasons that laptop computers are difficult to upgrade and expensive to repair. Often the failure of one laptop component requires the replacement of the entire motherboard, which is usually more expensive than a desktop motherboard due to the large number of integrated components.

Peripheral Card Slots

A typical motherboard of 2009 will have a different number of connections depending on its standard.
A standard ATX motherboard will typically have one PCI-E 16x connection for a graphics card, two conventional PCI slots for various expansion cards, and one PCI-E 1x (which will eventually supersede PCI). A standard EATXmotherboard will have one PCI-E 16x connection for a graphics card, and a varying number of PCI and PCI-E 1x slots. It can sometimes also have a PCI-E 4x slot. (This varies between brands and models.)
Some motherboards have two PCI-E 16x slots, to allow more than 2 monitors without special hardware, or use a special graphics technology called SLI (for Nvidia) and Crossfire (for ATI). These allow 2 graphics cards to be linked together, to allow better performance in intensive graphical computing tasks, such as gaming and video editing.
As of 2007, virtually all motherboards come with at least four USB ports on the rear, with at least 2 connections on the board internally for wiring additional front ports that may be built into the computer's case. Ethernet is also included. This is a standard networking cable for connecting the computer to a network or a modem. A sound chip is always included on the motherboard, to allow sound output without the need for any extra components. This allows computers to be far more multimedia-based than before. Some motherboards have their graphics chip built into the motherboard rather than needing a separate card. A separate card may still be used.


With the steadily declining costs and size of integrated circuits, it is now possible to include support for many peripherals on the motherboard. By combining many functions on onePCB, the physical size and total cost of the system may be reduced; highly integrated motherboards are thus especially popular in small form factor and budget computers.
For example, the ECS RS485M-M, a typical modern budget motherboard for computers based on AMD processors, has on-board support for a very large range of peripherals:
  • disk controllers for a floppy disk drive, up to 2 PATA drives, and up to 6 SATA drives (including RAID 0/1 support)
  • integrated graphics controller supporting 2D and 3D graphics, with VGA and TV output
  • integrated sound card supporting 8-channel (7.1) audio and S/PDIF output
  • Fast Ethernet network controller for 10/100 Mbit networking
  • USB 2.0 controller supporting up to 12 USB ports
  • IrDA controller for infrared data communication (e.g. with an IrDA-enabled cellular phone or printer)
  • temperature, voltage, and fan-speed sensors that allow software to monitor the health of computer components
Expansion cards to support all of these functions would have cost hundreds of dollars even a decade ago; however, as of April 2007 such highly integrated motherboards are available for as little as $30 in the USA.

Overview

A motherboard, like a backplane, provides the electrical connections by which the other components of the system communicate, but unlike a backplane, it also connects the central processing unit and hosts other subsystems and devices.
A typical desktop computer has its microprocessor, main memory, and other essential components connected to the motherboard. Other components such as external storage, controllers for video display and sound, and peripheral devices may be attached to the motherboard as plug-in cards or via cables, although in modern computers it is increasingly common to integrate some of these peripherals into the motherboard itself.
An important component of a motherboard is the microprocessor's supporting chipset, which provides the supporting interfaces between the CPU and the various buses and external components. This chipset determines, to an extent, the features and capabilities of the motherboard.

History

Prior to the advent of the microprocessor, a computer was usually built in a card-cage case or mainframe with components connected by a backplane consisting of a set of slots themselves connected with wires; in very old designs the wires were discrete connections between card connector pins, but printed circuit boards soon became the standard practice. The Central Processing Unit, memory and peripherals were housed on individual printed circuit boards which plugged into the backplane.
During the late 1980s and 1990s, it became economical to move an increasing number of peripheral functions onto the motherboard (see below). In the late 1980s, motherboards began to include single ICs (called Super I/O chips) capable of supporting a set of low-speed peripherals: keyboard, mouse, floppy disk drive, serial ports, and parallel ports. As of the late 1990s, many personal computer motherboards supported a full range of audio, video, storage, and networking functions without the need for any expansion cards at all; higher-end systems for 3D gaming and computer graphics typically retained only the graphics card as a separate component.
The early pioneers of motherboard manufacturing were Micronics, Mylex, AMI, DTK, Hauppauge, Orchid Technology, Elitegroup, DFI, and a number of Taiwan-based manufacturers.

Motherboard

In personal computers, a motherboard is the central printed circuit board (PCB) in many modern computers and holds many of the crucial components of the system, while providing connectors for other peripherals. The motherboard is sometimes alternatively known as the main board, system board, or, on Apple computers, the logic board. It is also sometimes casually shortened to mobo.

Thursday, February 17, 2011

Miscellaneous

Many, but not all, computer keyboards have a numeric keypad to the right of the alphabetic keyboard which contains numbers, basic mathematical symbols (e.g., addition, subtraction, etc.), and a few function keys. OnJapanese/Korean keyboards, there may be Language input keys. Some keyboards have power management keys (e.g., Power keySleep key and Wake key); Internet keys to access a web browser or E-mail; and/or multimedia keys, such as volume controls.

Also known as photo-optical keyboard, light responsive keyboard, photo-electric keyboard and optical key actuation detection technology.
An optical keyboard technology utilizes light emitting devices and photo sensors to optically detect actuated keys. Most commonly the emitters and sensors are located in the perimeter, mounted on a small PCB. The light is directed from side to side of the keyboard interior and it can only be blocked by the actuated keys. Most optical keyboards require at least 2 beams (most commonly vertical beam and horizontal beam) to determine the actuated key. Some optical keyboards use a special key structure that blocks the light in a certain pattern, allowing only one beam per row of keys (most commonly horizontal beam).


In computing, a keyboard is a typewriter keyboard, which uses an arrangement of buttons or keys, to act as mechanical levers or electronic switches. With the decline of punch cards and paper tape, interaction via teletype-style keyboards became the main input device for computers.
for direct (human) input into computers.
A keyboard typically has characters engraved or printed on the keys and each press of a key typically corresponds to a single written symbol. However, to produce some symbols requires pressing and holding several keys simultaneously or in sequence. While most keyboard keys producelettersnumbers or signs (characters), other keys or simultaneous key presses can produce actions or computer commands.
In normal usage, the keyboard is used to type text and numbers into a word processortext editor or other program. In a modern computer, the interpretation of key presses is generally left to the software. A computer keyboard distinguishes each physical key from every other and reports all key presses to the controlling software. Keyboards are also used for computer gaming, either with regular keyboards or by using keyboards with special gaming features, which can expedite frequently used keystroke combinations. A keyboard is also used to give commands to the operating system of a computer, such as WindowsControl-Alt-Deletecombination, which brings up a task window or shuts down the machine. 



Also known as bats, flying mice, or wands, these devices generally function through ultrasound and provide at least three degrees of freedom. Probably the best known example would be 3DConnexion/Logitech's SpaceMouse from the early 1990s.
In the late 1990s Kantek introduced the 3D RingMouse. This wireless mouse was worn on a ring around a finger, which enabled the thumb to access three buttons. The mouse was tracked in three dimensions by a base station. Despite a certain appeal, it was finally discontinued because it did not provide sufficient resolution.
A recent consumer 3D pointing device is the Wii Remote. While primarily a motion-sensing device (that is, it can determine its orientation and direction of movement), Wii Remote can also detect its spatial position by comparing the distance and position of the lights from the IRemitter using its integrated IR camera (since the nunchuk accessory lacks a camera, it can only tell its current heading and orientation). The obvious drawback to this approach is that it can only produce spatial coordinates while its camera can see the sensor bar.
A mouse-related controller called the SpaceBall™  has a ball placed above the work surface that can easily be gripped. With spring-loaded centering, it sends both translational as well as angular displacements on all six axes, in both directions for each.
November 2010 a German Company called Axsotic introduced a new concept of 3D mouse called 3D Spheric Mouse. This new concepts of a true 6 DOF input-device uses a ball to rotate in 3 Achses without any limitations.


Mechanical Mice


Bill English, builder of Engelbart's original mouse, invented the ball mouse in 1972 while working for Xerox PARC
The ball-mouse replaced the external wheels with a single ball that could rotate in any direction. It came as part of the hardware package of the Xerox Alto computer. Perpendicular chopper wheels housed inside the mouse's body chopped beams of light on the way to light sensors, thus detecting in their turn the motion of the ball. This variant of the mouse resembled an inverted trackball and became the predominant form used with personal computers throughout the 1980s and 1990s. The Xerox PARC group also settled on the modern technique of using both hands to type on a full-size keyboard and grabbing the mouse when required.


Mouse

In computing, a mouse is a pointing device that functions by detecting two-dimensional motion relative to its supporting surface. Physically, a mouse consists of an object held under one of the user's hands, with one or more buttons. It sometimes features other elements, such as "wheels", which allow the user to perform various system-dependent operations, or extra buttons or features that can add more control or dimensional input. The mouse's motion typically translates into the motion of a cursor on a display, which allows for fine control of a graphical user interface.


Sunday, January 23, 2011

Network topology


Computer networks may be classified according to the networ topology upon which the network is based, such as bus network, star network, ring network, mesh network. Network topology is the coordination by which devices in the network are arranged in their logical relations to one another, independent of physical arrangement. Even if networked computers are physically placed in a linear arrangement and are connected to a hub, the network has a star topology, rather than a bus topology. In this regard the visual and operational characteristics of a network are distinct. Networks may be classified based on the method of data used to convey the data, these include digital and analog networks.

Wired technologies


§  Twisted pair wire is the most widely used medium for telecommunication. Twisted-pair cabling consist of copper wires that are twisted into pairs. Ordinary telephone wires consist of two insulated copper wires twisted into pairs. Computer networking cabling consist of 4 pairs of copper cabling that can be utilized for both voice and data transmission. The use of two wires twisted together helps to reduce crosstalk and electromagnetic induction. The transmission speed ranges from 2 million bits per second to 100 million bits per second. Twisted pair cabling comes in two forms which are Unshielded Twisted Pair (UTP) and Shielded twisted-pair (STP) which are rated in categories which are manufactured in different increments for various scenarios.
§  Coaxial cable is widely used for cable television systems, office buildings, and other worksites for local area networks. The cables consist of copper or aluminum wire wrapped with insulating layer typically of a flexible material with a high dielectric constant, all of which are surrounded by a conductive layer. The layers of insulation help minimize interference and distortion. Transmission speed range from 200 million to more than 500 million bits per second.
§  Optical fiber cable consists of one or more filaments of glass fiber wrapped in protective layers. It transmits light which can travel over extended distances. Fiber-optic cables are not affected by electromagnetic radiation. Transmission speed may reach trillions of bits per second. The transmission speed of fiber optics is hundreds of times faster than for coaxial cables and thousands of times faster than a twisted-pair wire.

Wireless technologies

§  Terrestrial microwave – Terrestrial microwaves use Earth-based transmitter and receiver. The equipment look similar to satellite dishes. Terrestrial microwaves use low-gigahertz range, which limits all communications to line-of-sight. Path between relay stations spaced approx, 30 miles apart. Microwave antennas are usually placed on top of buildings, towers, hills, and mountain peaks.
§  Communications satellits – The satellites use microwave radio as their telecommunications medium which are not deflected by the Earth's atmosphere. The satellites are stationed in space, typically 22,000 miles (for geosynchronous satellites) above the equator. These Earth-orbiting systems are capable of receiving and relaying voice, data, and TV signals.
§  Cellular and PCS systems – Use several radio communications technologies. The systems are divided to different geographic areas. Each area has a low-power transmitter or radio relay antenna device to relay calls from one area to the next area.
§  Wireless LANs – Wireless local area network use a high-frequency radio technology similar to digital cellular and a low-frequency radio technology. Wireless LANs use spread spectrum technology to enable communication between multiple devices in a limited area. An example of open-standards wireless radio-wave technology is IEEE.
§  Infrared communication , which can transmit signals between devices within small distances not more than 10 meters peer to peer or ( face to face ) without any body in the line of transmitting.

Scale

Networks are often classified as local area network (LAN), wide area network (WAN), metropolitan area network (MAN), personal area network (PAN), virtual private network (VPN), campus area network (CAN), storage area network (SAN), and others, depending on their scale, scope and purpose, e.g., controller area network (CAN) usage, trust level, and access right often differ between these types of networks. LANs tend to be designed for internal use by an organization's internal systems and employees in individual physical locations, such as a building, while WANs may connect physically separate parts of an organization and may include connections to third parties.

History


Early networks of communicating computers included the military radar system Semi-Automatic Ground Environment (SAGE) and its relative the commercial airline reservation system Semi-Automatic Business Research Environment (SABRE), starting in the late 1950s.
In the 1960s, the Advanced Research Projects Agency (ARPA) started funding the design of the Advanced Research Projects Agency Network (ARPANET) for the United States Department of Defense. Development of the network began in 1969, based on designs developed during the 1960s.The ARPANET evolved into the modern Internet.

Purpose


§  Facilitating communications. Using a network, people can communicate efficiently and easily via email, instant messaging, chat rooms, telephone, video telephone calls, and video conferencing.
§  Sharing hardware. In a networked environment, each computer on a network may access and use hardware resources on the network, such as printing a document on a shared network printer.
§  Sharing files, data, and information. In a network environment, authorized user may access data and information stored on other computers on the network. The capability of providing access to data and information on shared storage devices is an important feature of many networks.
§  Sharing software. Users connected to a network may run application programs on remote computers.
§  Information preservation.
§  Security.

 

Network Classification.


Connection method

Computer networks can be classified according to the hardware and software technology that is used to interconnect the individual devices in the network, such as optical fiber, Ethernet, wireless LAN, HomePNA, power line communication or G.hn.
Ethernet as it is defined by IEEE 802 utilizes various standards and mediums that enable communication between devices. Frequently deployed devices include hubs, switches, bridges, or routers. Wireless LAN technology is designed to connect devices without wiring. These devices use radio waves or infrared signals as a transmission medium. ITU-T G.hn technology uses existing home wiring (coaxial cable, phone lines and power lines) to create a high-speed (up to 1 Gigabit/s) local area 

Computer Network.

A computer network, often simply referred to as a network, is a collection of computers and devices interconnected by communications channels that facilitate communications among users and allows users to share resources. Networks may be classified according to a wide variety of characteristics. A computer network allows sharing of resources and information among interconnected devices

Campus network


A campus network is a computer network made up of an interconnection of local area networks (LAN's) within a limited geographical area. The networking equipments (switches, routers) and transmission media (optical fiber, copper plant, Cat5 cabling etc.) are almost entirely owned (by the campus tenant / owner: an enterprise, university, government etc.).
In the case of a university campus-based campus network, the network is likely to link a variety of campus buildings including; academic departments, the university library and student residence halls.

Wide area network


A wide area network (WAN) is a computer network that covers a large geographic area such as a city, country, or spans even intercontinental distances, using a communications channel that combines many types of media such as telephone lines, cables, and air waves. A WAN often uses transmission facilities provided by common carriers, such as telephone companies. WAN technologies generally function at the lower three layers of the OSI reference model: the physical layer, the data link layer, and the network layer.

Home area network


A home area network (HAN) is a residential LAN which is used for communication between digital devices typically deployed in the home, usually a small number of personal computers and accessories, such as printers and mobile computing devices. An important function is the sharing of Internet access, often a broadband service through a CATV or Digital Subscriber Line (DSL) provider. It can also be referred to as an office area network (OAN).

Personal area network


A personal area network (PAN) is a computer network used for communication among computer and different information technological devices close to one person. Some examples of devices that are used in a PAN are personal computers, printers, fax machines, telephones, PDAs, scanners, and even video game consoles. A PAN may include wired and wireless devices. The reach of a PAN typically extends to 10 meters.A wired PAN is usually constructed with USB and Firewire connections while technologies such as Bluetooth and infrared communication typically form a wireless PAN.

Types of Network Based on Physical Scope


A local area network (LAN) is a network that connects computers and devices in a limited geographical area such as home, school, computer laboratory, office building, or closely positioned group of buildings. Each computer or device on the network is a node. Current wired LANs are most likely to be based on Ethernet technology, although new standards like ITU-T G.hn also provide a way to create a wired LAN using existing home wires (coaxial cables, phone lines and power lines).

All interconnected devices must understand the network layer (layer 3), because they are handling multiple subnets (the different colors). Those inside the library, which have only 10/100 Mbit/s Ethernet connections to the user device and a Gigabit Ethernet connection to the central router, could be called "layer 3 switches" because they only have Ethernet interfaces and must understand IP. It would be more correct to call them access routers, where the router at the top is a distribution router that connects to the Internet and academic networks' customer access routers.
The defining characteristics of LANs, in contrast to WANs (Wide Area Networks), include their higher data transfer rates, smaller geographic range, and no need for leased telecommunication lines. Current Ethernet or other IEEE 802.3 LAN technologies operate at speeds up to 10 Gbit/s. This is the data transfer rate. IEEE has projects investigating the standardization of 40 and 100 Gbit/s.